
LESSON 2 
 

Step 1: Set up the NMI 
The NMI, or Non-Maskable Interrupt, can be a bit tricky to explain. Before 
we talk about it in terms of the NES, let’s just talk about what Non-
Maskable Interrupt means in terms of computer programming. An interrupt 
is exactly what it sounds like - something that interrupts the normal flow of 
a program. A non-maskable interrupt is an interruption to the code that is 
prioritized over the program and unable to be disabled. Forgetting the NES 
for a moment, pretend you’re surfing the internet. In conjunction with your 
operating system, your web browser observes certain code in order to 
function. Now, for some reason, your computer starts to lag. You press 
CNTRL-ALT-DELETE.to bring up the task manager. This invokes an 
operating system back door that interrupts the normal functioning of the 
web browser. Nothing in the web browser’s programming allows it to ignore 
this interruption. This sort of paints a picture of what a non-maskabe 
interrupt is. 
 
On to how this concept relates to the NES - In simplest terms, when 
running your game, the part of the NES that draws to the screen (the PPU, 
or picture processing unit) is either preparing to draw the next frame or 
actively drawing the next frame. Our game logic is going on in parallel to 
this - you’re game is reading inputs, doing mathematical operations, 
branching and comparing and setting up for the next frame. The PPU is 
rendering scanline by scanline, the whole way, evaluating what pixels it 
should draw. Then, the PPU finishes rendering the last pixel of the last 
scanline, and enters into what is called vBlank, short for Vertical Blank (or 
Vertical Blanking Interval). 
 
For a mental image, the vBlank is the incredibly short amount of time 
between frames. This is when the light beam is traveling from the bottom of 
your screen back to the top of your screen in order to begin drawing the top 
scanline again. When it gets to the top of the screen, vBlank time is over 
and the next screen begins to render. This happens 60 times per second, 
giving the NES game 60 individually redrawn frames per second. 
 



During this vBlank time, you need to send the PPU all of the updated 
instructions on what to draw where. Once it begins rendering again, you 
can’t tell it to stop what it’s doing to make a change, because it’s just 
barreling through drawing line by line. You have to wait for that cool down 
period where it’s not drawing lines to give it the new marching orders. 
 
For the NES, the NMI (or Non-Maskable Interrupt) triggers at the beginning 
of each vBlank. Here is where you have to write all of the new drawing 
instructions to the PPU. If there are tiles that need to be updated, this is 
where the instruction needs to be given. If a sprite graphic has moved to a 
new position, this is where that new information needs to be conveyed. And 
because this is the portion of the game that deals with regulating your 
game’s timing, it’s usually advisable to update music and sound effects 
here too, so that you can be sure they stay consistent frame to frame.  
 
But as stated, the unfortunate news is that the time here is finite. There is 
only so much that we can accomplish during one vBlank period, and if that 
light bar gets back to the top of the screen before we’ve finished the 
vBlank, it can have unexpected, game crashing results. 
 
We’ll back up our temporary variables and registers in case we need to use 
them and corrupt their values during NMI functions. We’ll create a simple 
NMI. We’ll push all of the new frame’s sprite data to the PPU, we’ll set the 
scroll, we’ll handle frame timing, and eventually we may want to come back 
here to regulate music timing. Lastly, we’ll restore our temporary variables 
and registers to their state when we hit the vBlank. 
 
Open Script Settings, click on the NMI Script Define, and click edit. In your 
script editor, save a copy of the NMI file as NMI_Tutorial. 
 



 
 
Step 2: Assign this new file as our NMI.  
In the script settings, navigate the script finder to the System folder and 
attach our new NMI_Tutorial.asm to the NMI Script definition. 
 
 
 



 
 
 

Step 3 :Construct a simple NMI file between the NMI label and the RTI 
command, which is the 6502 ASM command that means Return From 
Interrupt. 
 
The first thing that we’re going to do is back up all of our registers, and then 
restore all of our registers. Whenever I have a piece of code that requires 
an open and close section, I like to do them at the same time and then fill in 
the middle part, often with a tab. This makes it very easy to spot check and 
make sure that everything that needs closure has, in fact, been closed. 
 



 
 
The first thing that this NMI is doing is PHA, and the last is PLA. The 
command PHA pushes the accumulator (PH = Push, A = the accumulator) 
to the stack, and PLA pulls the value off the stack and puts it back into the 
accumulator (PL = Pull, A = accumulator). If you’re unfamiliar with this sort 
of programming, that sentence is a lot of words and acronyms that don’t 
mean much. So let’s put it in easier terms. We’ll start with the stack. 
 
When programming for the NES, you have something called the stack. This 
is basically a scratch pad space in RAM that you can toss values to hold 
temporarily. Consider the stack a buddy who will hold your drink for you 
while you shoot a free throw. You had hands. They were busy drinking. But 
you needed your hands to shoot the free throw. So you say, “Hey, Stack 
good buddy, could you hold my beverage while I take this free throw?” He 
obliges, you use your hands to shoot the freethrow, and then he gives you 
back your frosty libation so that you can resume using your hands to enjoy 
the drink. 
 
In the code above, as soon as the vBlank happens and the NMI 
consequently triggers, your game says, “Hey, Stack good buddy, hold on to 
this accumulator for me.” Then, it will use the accumulator to do a bunch of 
other things. At the end of doing those things, your game says, “Thanks, 
Stack, can I get that accumulator back?”, and when the game returns from 



the vBlank and continues to the next frame, the accumulator is in the exact 
same state it was in as if the NMI never tripped. This means that if the code 
was in the middle of running logic that was making use of the accumulator 
when the NMI hit (which it almost certainly was), we put things back exactly 
the way they were upon returning to running the logic. 
 
Hopefully that makes the function of the stack easy enough to understand, 
but what is the accumulator?  The accumulator is a register that can hold 
one byte of data at a time, and it is used in pretty much every function and 
operation in your game. You load values to the accumulator, you use 
comparisons on the accumulator, you perform math on the accumulator, 
you send the value that is in the accumulator to memory addresses. 
Basically, the accumulator is the flux capacitor of 6502 ASM - it is “what 
makes ASM programming possible”. 
 
To make it a bit clearer, let’s talk about some of the things you could do 
with the accumulator. We’ve already talked a bit about memory addresses. 
We know that a zero page memory address with a label can effectively act 
like a variable. Let’s say for a moment that we gave memory address 
$0007 a label of myPositionX, and planned to use it as a variable to keep 
track of the x position of our player. The mailbox is set up, but how do we 
send that mailbox a message? The accumulator is how. We would tell our 
program to load a value to the accumulator, and then store what is in the 
accumulator to that memory address. That would look like this (do not write 
this anywhere, it is just to explain the accumulator register): 
 
LDA #$05 ;; loads the number 5 to the accumulator 
STA myPositionX ;; stores the value in accumulator to myPositionX 
 
This two lines of code would say Load (LD) into the Accumulator (A) the 
number 5, then Store (ST) the value in the Accumulator (A) to myPositionX. 
The practical effect of this is that the variable myPositionX would be set to 
5. 
 
Or if we wanted to check the value at myPositionX, we would need to do 
some sort of comparison. If we wanted to check to see if myPositionX is 8, 
we would write: 
 
LDA myPositionX ; load the value in myPositionX to the accumulator 
CMP #$08; is what is in the accumulator equal to 8? 
 



Basically, just about everything that we’re going to do in coding for the NES 
will involve the accumulator. And why that’s important to understand is that 
our NMI will need to make use of the accumulator too. Let’s pretend the 
last thing we did in our logic before the NMI suddenly hit was the LDA 
myPositionX command. Before we enter the accumulator, we loaded 
myPositionX. Let’s say it is 8 at that moment. That means that next in the 
logic, we should get a positive “Yes! It is 8! Do the thing you want to do if it 
is 8!” 
 
But then the NMI hit. And inside the NMI, we had to use the accumulator in 
our prepping of the screen graphics for the next frame to be drawn. At the 
end of doing so, some arbitrary number like 27 is loaded into the 
accumulator. Now we return to the logic, picking up right where it left off. 
Except now it will not return a positive, because the accumulator is no 
longer 8, it’s 27, its value corrupted by the NMI. 
 
This is why it’s important to preserve this value so it’s the same coming out 
as it was going in. We store the accumulator to the stack. We do all the 
NMI things, corrupting the accumulator as much as we need to, then at the 
end before jumping back to the logic, pull the stack value and put it back 
into the accumulator - as far as the logic is concerned, it was there the 
whole time and never changed.  
 
 
Step 4: Backing up the other registers, too. 
There are three main registers that we will use constantly and very well 
might corrupt in our eventual NMI code, and there is one that it is a good 
idea to back up and restore as well. 
 
I left a space between our existing code and what I added, and made sure 
to comment everything appropriately. Besides the accumulator, we are 
going to store and restore the processor status (P), the x register, (x) and 
the y register (y). The x and y registers are similar in many ways to the 
accumulator, but have specific uses that we’ll talk about through this 
tutorials 
 
You’ll notice, I backed up all the registers in one spot at the beginning of 
the NMI, then restored them all at the end of the NMI. You’ll also notice that 
they are restored in the reverse order that they were added to the stack. 
Again, this is pretty easy to understand if you already  understand the 



stack. When you place a value into the stack, it is placed on top of 
everything that came before it on the stack. Imagine dealing five playing 
cards into a pile. If you dealt them in the order Jack, Deuce, Queen, Ace, 
and Ten, you’d be looking at the 10 on top of the pile. If you then pulled 
them off that pile one at a time, you’d pull them off in the order Ten, Ace, 
Queen, Deuce, then Jack. The stack works in the same way. The first value 
added to the stack is at the bottom, and every subsequent value is placed 
on top. When we pull values from the stack, it starts at the top. 
 
So in this example, we’re pushing values to the stack in the order A, X, Y, 
P, and then pulling them from the top, restoring from the stack in the 
reverse order of P, Y, X, A. 
 

 
 



Step 5: Add some NMI Functionality. 
We’re going to continue to come back and revise this as we start to build 
out our code, but for now we can put some placeholders for our graphic 
updates in the middle. Graphic updates include updates to vRam (video 
ram), which is specific RAM dedicated to the PPU (picture processing unit). 
In our game’s logic, we are setting up potential changes for the game’s 
next frame, during the NMI we write those changes to this vRam in the 
PPU, and on the next frame, the PPU renders those changes. For instance, 
the logic of your game has the player object move to the left 4 pixels. This 
has happened mathematically, and the memory addresses that determine 
his position have changed to reflect the change. But the change won’t be 
visible yet. Not until vBlank, when the NMI is tripped, the new data from 
those memory addresses are pushed into vRam, and the screen is redrawn 
in the next frame. Of course, this happens 60 times per second so it 
appears instantaneous, but it is still good to understand how it is all 
working. 
 
Before adding code, let’s add a skeleton for the types of things we’ll update 
in our NMI. For the purposes of this instructional, we’re not worried about 
optimizing and are more concerned with the concepts. A legitimate game 
might have better ways to mine this data, but we’re going to try to convey it 
as clearly as possible for the time being. 
 



 
 

Here, I added some section dividers so it’s easy to see what I am adding. 
Anything commented out is not necessary, but sure makes things easier to 
read and to find when you need to! 
 
There is more that we’ll eventually add into the body of our NMI, and there 
are some ways that we can better approach the NMI too, but this gives a 
clear idea of the types of things that will go on here. First,  
 



Let’s definitely handle the sprite updates first, which we can do directly here 
in the NMI with just a few lines of code. 
 
Step 6: Push our sprite data to the vRam so it can be drawn during 
the next frame render. 
 

 
 
There is a bit to unpack here. In this four lines of code, what we are doing 
is twofold. The first thing to notice is that we’re talking about a 16 bit 
variable; one high byte and one low byte. This is pretty easy to imagine. If a 
single byte that is made of 8 bits can be expressed with two digits, from 
#$00 - #$FF, then you can imagine how a 16 bit value can be expressed in 
four digits; #0000-#$FFFF. All of our memory addresses are expressed 
with 16 bit values. Remember when creating our memory map, we used 
values such as $0600 and $0200, and $0000? Those are sixteen bit 
values. The first byte is the high byte, an the second byte is the low byte. 
So for the random address $038F, the high byte is #$03 and the low byte is 
#$8F. 
 



Here, $2003 and $4014 are special memory locations that are specific to 
the NES architecture. They both have to do with the OAM (Object Attribute 
Memory). That is the part of the internal PPU memory that has to do with 
drawing sprites. There are room for 64 sprites, each needing 4 bytes to 
represent; x value, y value, tile number and attribute information (flips, 
palette choice, etc). So the reason that the NES has a hard 64 sprite limit is 
that there are only 256 bytes allocated to this in its PPU ram, and 64x4 = 
256. 
 
Now, understanding what we do about 16 bit variables, we can see we’re 
doing something with pushing #$00 to a low byte of something, and #02 to 
the high byte of something. So we’re effectively pushing $0200 to 
something, and we know this involves sprites. 
 
If you look back at our memory map, we determined that our label 
SpriteRam would be placed at $0200. Basically, our logic is going to use 
$0200 to deal with the y value of our first sprite, $0201 to deal with the tile 
choice of our first sprite, $0202 to deal with the attribute information of our 
first sprite, and $0203 to deal with the x value of our first sprite. We will be 
writing that during logic time to the SpriteRam address. Here during the 
NMI, we will be copying the values of those addresses to vRam to prepare 
for rendering accordingly in the next frame. 
 
Writing #$00 to $2003 and #$02 to $4014 lets vRam know from where it 
will copy data, and automatically by writing to $4014, the NMI will kick off 
that copy routine. The result of all this is that we can write sprite values to 
$0200-$02ff during regular logic time, and the PPU will update the render 
based on that in the next frame by copying the contents of those mailboxes 
to the picture processing unit’s vRam. 
 
For the moment, we’ll skip over handling background tile updates. 
 
 
 
Step 7: Create some constants for colors. 
Temporarily, we’re going to directly write to the palette addresses in the 
PPU, though this does give us a great opportunity to create some 
constants with proper names so that we don’t have to try to remember 
which color is what. 
 



This is a list of colors that are accessible to NESmaker through the GUI 
tools. On each color is a hex value, and off to the right there are common 
names that just help identify these things for the tool. We’ll use this as a 
guide to set up our constants. Remember, constants are not actually being 
factored into your code or taking up ROM space - they are just identifiers 
that get substituted with their value at run time, so we can really put our 
constant definitions anywhere.  
 

 
 
I could go through and give these all common names with constants, and I 
might eventually do that. For now, I’m just going to set up constants for a 
handful of them. 



 
 

Step 8: Directly set some palettes via vRam addresses. 
To write to the PPU, the rendering must be turned off. Fortunately during 
vBlank, rendering is always turned, so we can do it directly. When we flesh 
the game out more, we’ll likely want to handle this with RAM variables 
similar to how we’re handling sprites, but for now, we’ll just slam in a bunch 
of values to the palette addresses in vRam, which begin at $3F00. 
 
To write to the PPU, we write our high and low bytes to $2006, and then 
the value we’d like to place in that proverbial mailbox to $2007. So, for 
instance, if I wrote: 



 
LDA #$3F 
STA $2006 
LDA #$00 
STA $2006 
LDA #$00 
STA $2007 
 
This would write a value of 00 to the memory address $3F00, which is the 
address for the first palette color. 
 

 
 



For the moment, we’ll hold off on the other colors, but right now, we will be 
writing purple to the very first palette slot. Once we get through a few more 
steps, we’ll check our work. 
 

Step 9: Restore PPU Control. 
We have two more addresses we want to write to at the end of our NMI; the 
PPU CONTROL and the PPU MASK, located at addresses $2000 and 
$2001 respectively. For a quick glance, this is what each bit for these bytes 
do. 
 
$2000, PPU CONTROL 
 
7  bit  0 
---- ---- 
VPHB SINN 
|||| |||| 
|||| ||++- Base nametable address 
|||| ||    (0 = $2000; 1 = $2400; 2 = $2800; 3 = $2C00) 
|||| |+--- VRAM address increment per CPU read/write of PPUDATA 
|||| |     (0: add 1, going across; 1: add 32, going down) 
|||| +---- Sprite pattern table address for 8x8 sprites 
||||       (0: $0000; 1: $1000; ignored in 8x16 mode) 
|||+------ Background pattern table address (0: $0000; 1: $1000) 
||+------- Sprite size (0: 8x8 pixels; 1: 8x16 pixels  
|+-------- PPU master/slave select 
+--------- Generate an NMI at the start of the 
           vertical blanking interval (0: off; 1: on) 
 
$2001, PPU MASK 
7  bit  0 
---- ---- 
BGRs bMmG 
|||| |||| 
|||| |||+- Greyscale (0: normal color, 1: greyscale) 
|||| ||+-- 1: Show background in leftmost 8 pixels of screen, 0: Hide 
|||| |+--- 1: Show sprites in leftmost 8 pixels of screen, 0: Hide 
|||| +---- 1: Show background 
|||+------ 1: Show sprites 
||+------- Emphasize red (green on PAL/Dendy) 
|+-------- Emphasize green (red on PAL/Dendy) 
+--------- Emphasize blue 
 
There are only a few things we need to worry about in each right now, but 
later we’ll get into more details. This is all going into the Restore PPU 
Control section that we set up in the NMI file. 
 
;; This will make sure that we continue hitting NMI during vblank 
;; and will set our sprite graphics to the first pattern table and  
;; background tiles to the second pattern table. 



   
LDA #%10010000    
STA $2000 

 
;; This will enable sprites and background graphics. 
;; It will not hide sprites at the edges of the screen. 
  LDA #%00011110   
   STA $2001 
 
;; This will make sure that our scroll is set to zero 
;; in both x and y direction 

LDA #$00 
STA $2005 
STA $2005 

 

 
 
Make sure to save your file. Now, you can go back to NESmaker and test 
your game with the export and test button. The screen should turn purple. 
Eureka! But wow - all this to get the screen to change color!  
 



 
 
The reason the screen turned purple is because we set purple to the very 
first palette slot, basically “slot zero”. Since we haven’t painted with any 
color to the screen yet, everything is a null value, thus zero, thus purple. 
 
Let’s add four colors to our background palette the long way based on this 
understanding. The following is a terrible way to do this, but it will work, and 
you should be able to follow along and understand what we’re doing based 
on what we’ve done so far. We will refine this later. 
 
Step 10: Add colors to our palette. 



Where we defined that purple color in the last step, copy and paste those 
six lines of code. Now, change the second write to $2006. We should see 
#$00 for the first color, #$01 for the second color, #$02 for the third color, 
and #$03 for the fourth color. This is telling the game to write to slot 0, 1, 2 
and 3 in the vRam memory reserved for palette info. 
 
Then change the colors so we have four distinct colors being drawn. I used 
purple, green, gold, and brown. 
 

 
 



Make sure to save the file, then run your game. It looks the same so far, 
but try pressing Control P to bring up the MESESN emulator’s PPU viewer, 
and then clock on the palette tab. If you did this correctly, what you’ll see is 
that the first four colors are as you defined them. Feel free to play around 
with changing the values of the colors and see the different results here in 
the PPU viewer. 
 

 
 
 

END OF LESSON 2 



Make sure to save your project from the file menu in NESmaker. This has 
been a lot of effort to get something happening in the emulator. You can 
see why we began developing tools to handle some of this up front heavy 
lifting! But you’ll definitely be a better developer, whether you use 
NESmaker as a tool or not, for having a better understanding of what 
exactly the GUI of NESmaker is doing under the hood. 
 
By now, you should understand bit about the NMI and what vBlank is. You 
should understand 16 bit memory addressing. You should have reinforced 
how to make constants, and learned how to write values directly to the 
vRam from inside the NMI. 
 


